

Surgical treatment of severe heart failure: past, present and future

Dr. med. Anton Sabashnikov Nizhny Novgorod, 30. July 2015

End stage heart failure

Roughly **1 000 000** people suffer from heart failure in Germany

Ca. 200 000 people per year die

Ca. 2500 could be transplanted

However, only **300** donor organs per year are available

Heart Transplants Donar age by year of transplant

Trends over time in heart failure overall survival

Evaluation of the Organ Care System in Heart Transplantation With an Adverse Donor/Recipient Profile

Diana García Sáez, MD, Bartlomiej Zych, MD, Anton Sabashnikov, MD, Christopher T. Bowles, PhD, Fabio De Robertis, MD, Prashant N. Mohite, MD, Aron-Frederik Popov, MD, PhD, Olaf Maunz, CCP, Nikhil P. Patil, MRCS, MCh, Alexander Weymann, MD, Timothy Pitt, CCP, Louise McBrearty, CCP, Bradley Pates, CCP, Rachel Hards, RN, Mohamed Amrani, MD, PhD, Toufan Bahrami, MD, Nicholas R. Banner, MD, PhD, and Andre R. Simon, MD, PhD

Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom

(Ann Thorac Surg 2014;98:2099–106) © 2014 by The Society of Thoracic Surgeons

Mechanical assistance as an alternative to heart transplantation

Time for a paradigm shift?

Therapy according to Guidelines (ESC 2012)

Outcomes in Patients Receiving HeartMate II Versus HVAD Left Ventricular Assist Device as a Bridge to Transplantation

A. Sabashnikov^{a,b,*}, P.N. Mohite^a, B. Zych^a, A.-F. Popov^a, J. Fatullayev^{a,b}, M. Zeriouh^b, R. Hards^a, D. García Sáez^a, M. Capoccia^a, Y.-H. Choi^b, T. Wahlers^b, F. De Robertis^a, T. Bahrami^a, M. Amrani^a, and A.R. Simon^a

Patients were censored for transplantation and VAD explantation due to myocardial recovery

First Ventricular Assist Device

Left Ventricular Bypass Pump for Cardiac Assistance

Clinical Experience

MICHAEL E. DeBAKEY, MD, FACC Houston, Texas

- Product of Total Artificial Heart Program (Est. 1963)
- Temporizing Measure Only

Technical development

- 1. Generation: pulsatile VAD (Thoratec HeartMate I)
- 2. Generation: non-pulsatile axial pump (Thoratec HeartMate II)
- 3. Generation: non-pulsatile centrifugal pump (HeartWare HVAD)
- 4. Generation: partial support VAD (CircuLite Synergy)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Long-Term Use of a Left Ventricular Assist Device for End-Stage Heart Failure

Rose EA et al. NEJM 2001

Improved Survival in LVAD Trial

HeartMate II BTT outcomes

Reference	Study	Enrollment period	n	One-Year Survival				
Miller, Pagani, Russell et al NEJM 357:885-896, 2007	HM II Pivotal Trial	<mark>3/05 - 5/06</mark>	133	68%				
Pagani, Miller, Russell et al JACC 54:312-321, 2009	HM II Pivotal Trial	3/05 - 3/07	281	74%		Baseline INTERI	IACS Profiles	
Starling, Naka, Boyle et al JACC 57:1890-8; 2011	Post Approval Study	4/08 - 8/08	169	85%	<u></u> 1-	INTERMACS Profile	HeartMate II (n=169)	61% of patients in the study were in
John, Naka, Smedira et al Ann Thor Surg 92:1406-13; 2011	Commercial vs. Trial	4/08 <mark>-</mark> 9/10	1469	85%		1 2	41 (24%) 63 (37%)	pione ror z.
			·			3 4 5-7	33 (20%) 21 (12%) 11 (7%)	

INTERMACS PATIENT PROFILE/STATUS & Timeframe Initiating Mechanical Circulatory Support

(Interagency Registry for Mechanical Assisted Circulatory Support)

Profile	Description	Time to MCS
1	"Crashing and burning" – critical cardiogenic shock	Within hours
2	"Progressive decline" – inotropes dependence with continuing detoriation	Within few days
3	"Stable but inotrope dependent" –describes clinical stability on mild-moderate	Within few weeks
4	"Recurrent advanced heart failure" "recurrent" rather than "refractory" decompensation	Within weeks to months
5	"Exertion intolerant" – describes patients who are comfortable at rest but are exercise intolerant	Variable
6	"Exertion limited" – a patient who is able to do some mild activity but fatigue results a few minutes or any meaningful physical exertion	Variable
7	"Advanced" describes patients who are clinically stable with reasonable level of comfortably activity, despite history of previous decompensation that is not recent	Not a candidate for MCS

Target Population for VAD Therapy

- Motivated
- Refractory to guideline-based medical management
- Able to understand pro and contra
- Excellent social support
- Excellent compliance
- No comorbidities with significant impact on survival, functional capacity and quality of life

Relative contraindications

- Age > 70 years, unless minimal or no clinical risk factors
- Chronic kidney disease with serum creatinine level > 3mg/dl
- Severe malnutrition (BMI < 21kg/m² in males and < 19kg/m² in females)
- Morbid obesity (BMI > 40 kg/m²)
- Severe mitral stenosis or moderate aortic insufficiency, or uncorrectable mitral insufficiency

De Novo Aortic Regurgitation After Continuous-Flow Left Ventricular Assist Device Implantation

Nikhil Prakash Patil, MRCS, MCh, Anton Sabashnikov, MD, Prashant N. Mohite, MRCS, MCh, Diana Garcia, MD, Alexander Weymann, MD, Bartlomiej Zych, MD, Christopher T. Bowles, PhD, Rachel Hards, RGN, Michael Hedger, RGN, Aron F. Popov, MD, Fabio De Robertis, MD, Ajay Moza, MD, Toufan Bahrami, MD, Mohamed Amrani, MD, PhD, Shelley Rahman-Haley, MD, Nicholas R. Banner, FRCP, FESC, and André Rüdiger Simon, MD, PhD

Departments of Cardiothoracic Transplantation and Mechanical Circulatory Support, Cardiology, and Heart Failure and Transplant Medicine, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom

	6 month	1 year	2 years	3 years	4 years
NS					
Freedom (%)	98.9	94.7	86.9	82.8	46.6
Patients at risk	85	57	32	10	3
Freedom (%) Patients at risk	98.9 85	94.7 57	86.9 32	82.8 10	46.6 3

Fig 1. Kaplan-Meier survival estimate (solid line) for freedom from moderate or greater aortic regurgitation (AR). Patients were censored (tick mark) for cardiac transplantation, device explantation for myocardial recovery, and device exchange, such as for device failure. (NS = not significant.)

Contraindications

- Recent or evolving stroke
- Neurological deficits impairing the ability to manage device
- Biventricular failure in patients older than 65 years
- Active systemic infections or major chronic risk for infection
- Severe pulmonary dysfunction (FEV1 < 1 I)
- Impending renal or hepatic failure
- Multisystem organ failure
- Inability to tolerate anticoagulation
- Significant underlying psychiatric illness

Ventricular Assist Devices

- LVAD/RVAD
- BiVAD (Biventricular Assist Device)
- TAH (Total Artificial Heart)

Therapeutische Strategien

- Bridge to transplant
- Destination therapy
- Myocardial recovery

European Journal of Cardio-Thoracic Surgery Advance Access published September 1, 2014

European Journal of Cardio-Thoracic Surgery (2014) 1-8 doi:10.1093/ejcts/ezu325 ORIGINAL ARTICLE

Outcomes after implantation of 139 full-support continuous-flow left ventricular assist devices as a bridge to transplantation

Anton Sabashnikov^{a,b,*}, Prashant N. Mohite^a, Alexander Weymann^a, Nikhil P. Patil^a, Mike Hedger^a, Diana García Sáez^a, Bartlomiej Zych^a, Thorsten Wahlers^b, Jens Wippermann^b, Fabio De Robertis^a, Toufan Bahrami^a, Mohamed Amrani^a, André R. Simon^a and Aron-Frederik Popov^a

^a Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield, UK

^b Department of Cardiothoracic Surgery, University Hospital of Cologne, Cologne, Germany

Kirklin JK J Heart Lung Transplant 2012;31(2):117-26

p<0.001

p=0.004

p=0.001

p<0.001

ADULT HEART TRANSPLANTATION % OF PATIENTS BRIDGED WITH MECHANICAL CIRCULATORY SUPPORT* (Transplants: 1/2000 – 12/2009)

* LVAD, RVAD, TAH

Are you too old for an LVAD?

Thank you for your attention!

